Functional Mechanism: Regression Analysis under Differential Privacy

نویسندگان

  • Jun Zhang
  • Zhenjie Zhang
  • Xiaokui Xiao
  • Yin Yang
  • Marianne Winslett
چکیده

ε-differential privacy is the state-of-the-art model for releasing sensitive information while protecting privacy. Numerous methods have been proposed to enforce ε-differential privacy in various analytical tasks, e.g., regression analysis. Existing solutions for regression analysis, however, are either limited to non-standard types of regression or unable to produce accurate regression results. Motivated by this, we propose the Functional Mechanism, a differentially private method designed for a large class of optimizationbased analyses. The main idea is to enforce ε-differential privacy by perturbing the objective function of the optimization problem, rather than its results. As case studies, we apply the functional mechanism to address two most widely used regression models, namely, linear regression and logistic regression. Both theoretical analysis and thorough experimental evaluations show that the functional mechanism is highly effective and efficient, and it significantly outperforms existing solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression Model Fitting under Differential Privacy and Model Inversion Attack

Differential privacy preserving regression models guarantee protection against attempts to infer whether a subject was included in the training set used to derive a model. It is not designed to protect attribute privacy of a target individual when model inversion attacks are launched. In model inversion attacks, an adversary uses the released model to make predictions of sensitive attributes (u...

متن کامل

Revisiting Differentially Private Regression: Lessons From Learning Theory and their Consequences

Private regression has received attention from both database and security communities. Recent work by Fredrikson et al. (USENIX Security 2014) analyzed the functional mechanism (Zhang et al. VLDB 2012) for training linear regression models over medical data. Unfortunately, they found that model accuracy is already unacceptable with differential privacy when ε = 5. We address this issue, present...

متن کامل

Privacy Preserving Machine Learning: Related Work

A practical scenario of PPML is where only one central party has the entire data on which the ML algorithm has to be learned. Agrawal and Ramakrishnan [1] proposed the first method to learn a Decision Tree classifier on a database without revealing any information about individual records. They consider public model private data setting where the algorithm and its parameters are public whereas ...

متن کامل

Quantifying Differential Privacy in Continuous Data Release under Temporal Correlations

Differential Privacy (DP) has received increasing attention as a rigorous privacy framework. Many existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives to continuously release private data for protecting privacy at each time point (i.e., event-level privacy), which assume that the data at different time points are independent, or that adversaries do not h...

متن کامل

An Adaptive Mechanism for Accurate Query Answering under Differential Privacy

We propose a novel mechanism for answering sets of counting queries under differential privacy. Given a workload of counting queries, the mechanism automatically selects a different set of “strategy” queries to answer privately, using those answers to derive answers to the workload. The main algorithm proposed in this paper approximates the optimal strategy for any workload of linear counting q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PVLDB

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012